Fang X, Hu H, Gao N, Liu S, Wang GD, Wang XY, Xia Y, Wood JD (2006). Neurogenic secretion mediated by the purinergic P2Y1 receptor in guinea-pig small intestine. Eur J Pharmacol 536(1-2):113-122. PMID: 16566916


We tested the hypothesis that ATP is an enteric neurotransmitter that acts at P2Y1 excitatory purinergic receptors on intestinal secretomotor neurons to evoke neurogenic mucosal secretion in the guinea pig. Ussing chamber methods for studying neurogenic intestinal secretion were used to test the hypothesis. Application of ATP evoked concentration-dependent increases in short circuit current (Isc) indicative of stimulation of electrolyte secretion. MRS2179, a selective P2Y1 purinergic receptor antagonist, suppressed the ATP-evoked responses in a concentration-dependent manner with an IC50 of 0.9+/-0.1 microM. Tetrodotoxin or a selective vasoactive intestinal peptide (VPAC1) receptor antagonist suppressed or abolished the ATP-evoked responses. A selective VPAC1 receptor antagonist also suppressed Isc responses evoked by electrical field stimulation of the secretomotor neurons. Secretory responses to ATP were not suppressed by scopolamine, piroxicam nor selective adenosine receptor antagonists. Region-specific differences in responses to ATP corresponded to regional differences in the expression of mRNA transcripts for the P2Y1 receptor. Post-receptor signal transduction for the P2Y1-evoked responses involved stimulation of phospholipase C and an IP3/Ca2+-calmodulin/protein kinase C signaling cascade. Our evidence suggests that ATP is released as a neurotransmitter to stimulateneurogenic mucosal secretion by binding to P2Y1 receptors expressed by VIP-ergic secretomotor neurons.

 Hongzhen Hu  Hu Lab  PubMed